# Mechanical Engineering Department <br> University of New Mexico 

Ph.D. Qualifying Examination
Controls Section
Fall 2018

## INSTRUCTIONS:

- Time allowed: 2 hours
- Closed book and closed notes; one sheet $(8.50 \times 11.00$ in, 2 -sided $)$ of formulas is allowed
- Laplace transform tables are included on the last two pages
- There are 4 problems worth a total of 100 points
- You MUST show and explain work to get credit
- Calculator allowed
- Laptops, cell phones, and similar electronic devices are not allowed


## Problem 1 (25 points).

Consider the system described by the characteristic equation:

$$
1+\frac{K}{s^{3}+6 s^{2}+5 s}=0
$$

a) Sketch the root locus as K varies from $K=0$ to $K \rightarrow \infty$.
b) Show all important calculations.
c) Clearly identify the real-axis segments (if any), the asymptotes (if any), and all breakaway and/or break-in points.
d) For what value(s) of $K$ are the roots on the imaginary axis?

## Problem 2 (25 points).

a) Derive the second-order differential equations for the positions $x_{1}, x_{2}$ in the mechanical system shown below.

Assume that the springs $k_{1}, k_{2}, k_{3}$ are linear springs, with $x_{1}=0, x_{2}=0, y=0$ corresponding to the unstretched states of the springs.

Assume that the dampers $b_{1}, b_{2}$ are linear dampers.
Assume that $y$ is a specified function of time.

b) Rewrite the second-order differential equations as a state-space system in the form

$$
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}
$$

Problem 3 (25 points). A given system has transfer function

$$
H(s)=\frac{0.5 s}{s^{4}+2.2 s^{3}+3 s^{2}+1.1 s+1}
$$

Where needed, use initial conditions $y(0)=1, \dot{y}(0)=-1, \ddot{y}(0)=2, \dddot{y}(0)=-2$.
a) Use Laplace transform methods to obtain the complete solution when the input is $u(t)=\sin 3 t$.
b) Use Laplace transform methods to obtain the complete solution when the input is $u(t)=\delta(t)$; i.e., find the impulse response.
c) Construct a Bode plot for the system for input $u(t)=\sin \omega t$.

Problem 4 (25 points). A system has the following state space representation:

$$
\dot{\mathbf{x}}=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u(t), \quad y=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \mathbf{x}
$$

a) Derive the corresponding transfer function.
b) What are the system poles?

## Laplace Transform Tables

|  | Number | Laplace transform | Time function | Comment |
| :---: | :---: | :---: | :---: | :---: |
| Properties of Laplace Transforms | - | $F(s)$ | $f(t)$ | Transform pair |
|  | 1 | $\alpha F_{1}(s)+\beta F_{2}(s)$ | $\alpha f_{1}(t)+\beta f_{2}(t)$ | Superposition |
|  | 2 | $F(s) e^{-s \lambda}$ | $f(t-\lambda)$ | Time delay $(\lambda \geq 0)$ |
|  | 3 | $\frac{1}{\|a\|} F\left(\frac{s}{a}\right)$ | $f(a t)$ | Time scaling |
|  | 4 | $F(s+a)$ | $e^{-a t} f(t)$ | Shift in frequency |
|  | 5 | $\begin{aligned} & s^{m} F(s)-s^{m-1} f(0) \\ & \quad-s^{m-2} \stackrel{\circ}{f}(0)-\cdots-f^{(m-1)}(0) \end{aligned}$ | $f^{(m)}(t)$ | Differentiation |
|  | 6 | $\frac{1}{s} F(s)+\frac{[f(t) d t \mid 0}{s}$ | $\int f(\zeta) d \zeta$ | Integration |
|  | 7 | $F_{1}(s) F_{2}(s)$ | $f_{1}(t) * f_{2}(t)$ | Convolution |
|  | 8 | $\lim _{s \rightarrow \infty} s F(s)$ | $f(0+)$ | Initial-value theorem |
|  | 9 | $\lim _{s \rightarrow 0} s F(s)$ | $\lim _{t \rightarrow \infty} f(t)$ | Final-value theorem |
|  | 10 | $\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} F_{1}(\zeta) F_{2}(s-\zeta) d \zeta$ | $f_{1}(t) f_{2} f(t)$ | Time product |
|  | 11 | $-\frac{d}{d s} F(s)$ | $t f(t)$ | Multiplication by time |

TABLE A. 2
Table of Laplace Transforms

| Number | $F(s)$ | $f(t), \quad t \geq 0$ |
| :---: | :---: | :---: |
| 1 | 1 | $\delta(t)$ |
| 2 | 1/s | $1(t)$ |
| 3 | $1 / s^{2}$ | $t$ |
| 4 | $2!/ s^{3}$ | $t^{2}$ |
| 5 | $3!/ s^{4}$ | $t^{3}$ |
| 6 | $m!/ s^{m+1}$ | $t^{m}$ |
| 7 | $1 /(s+a)$ | $e^{-a t}$ |
| 8 | $1 /(s+a)^{2}$ | $t e^{-a t}$ |
| 9 | $1 /(s+a)^{3}$ | $\frac{1}{2!} t^{2} e^{-a t}$ |
| 10 | $1 /(s+a)^{m}$ | $\frac{1}{(m-1)!} t^{m-1} e^{-a t}$ |
| 11 | $\frac{a}{s(s+a)}$ | $1-e^{-a t}$ |
| 12 | $\frac{a}{s^{2}(s+a)}$ | $\frac{1}{a}\left(a t-1+e^{-a t}\right)$ |
| 13 | $\frac{b-a}{(s+a)(s+b)}$ | $e^{-a t}-e^{-b t}$ |
| 14 | $\frac{s}{(s+a)^{2}}$ | $(1-a t) e^{-a t}$ |
| 15 | $\frac{a^{2}}{s(s+a)^{2}}$ | $1-e^{-a t}(1+a t)$ |
| 16 | $\frac{(b-a) s}{(s+a)(s+b)}$ | $b e^{-b t}-a e^{-a t}$ |
| 17 | $a /\left(s^{2}+a^{2}\right)$ | $\sin a t$ |
| 18 | $s /\left(s^{2}+a^{2}\right)$ | $\cos a t$ |
| 19 | $\frac{s+a}{(s+a)^{2}+b^{2}}$ | $e^{-a t} \cos b t$ |
| 20 | $\frac{b}{(s+a)^{2}+b^{2}}$ | $e^{-a t} \sin b t$ |
| 21 | $\frac{a^{2}+b^{2}}{s\left[(s+a)^{2}+b^{2}\right]}$ | $1-e^{-a t}\left(\cos b t+\frac{a}{b} \sin b t\right)$ |

