Mechanical Engineering Department University of New Mexico Ph.D. Qualifying Examination Controls Section Fall 2018

INSTRUCTIONS:

- Time allowed: 2 hours
- \bullet Closed book and closed notes; one sheet (8.50 \times 11.00 in, 2-sided) of formulas is allowed
- Laplace transform tables are included on the last two pages
- There are 4 problems worth a total of 100 points
- You MUST show and explain work to get credit
- Calculator allowed
- Laptops, cell phones, and similar electronic devices are not allowed

Problem 1 (25 points).

Consider the system described by the characteristic equation:

$$1 + \frac{K}{s^3 + 6s^2 + 5s} = 0$$

a) Sketch the root locus as K varies from K = 0 to $K \to \infty$.

b) Show all important calculations.

c) Clearly identify the real-axis segments (if any), the asymptotes (if any), and all break-away and/or break-in points.

d) For what value(s) of K are the roots on the imaginary axis?

Problem 2 (25 points).

a) Derive the second-order differential equations for the positions x_1, x_2 in the mechanical system shown below.

Assume that the springs k_1, k_2, k_3 are linear springs, with $x_1 = 0, x_2 = 0, y = 0$ corresponding to the unstretched states of the springs.

Assume that the dampers b_1, b_2 are linear dampers.

Assume that y is a specified function of time.

b) Rewrite the second-order differential equations as a state-space system in the form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

Problem 3 (25 points). A given system has transfer function

$$H(s) = \frac{0.5s}{s^4 + 2.2s^3 + 3s^2 + 1.1s + 1}$$

Where needed, use initial conditions y(0) = 1, $\dot{y}(0) = -1$, $\ddot{y}(0) = 2$, $\ddot{y}(0) = -2$.

a) Use Laplace transform methods to obtain the complete solution when the input is $u(t) = \sin 3t$.

b) Use Laplace transform methods to obtain the complete solution when the input is $u(t) = \delta(t)$; i.e., find the impulse response.

c) Construct a Bode plot for the system for input $u(t) = \sin \omega t$.

Problem 4 (25 points). A system has the following state space representation:

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 0 & 1\\ 0 & -2 & 0\\ 0 & 0 & -3 \end{bmatrix} + \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} u(t), \quad y = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \mathbf{x}$$

a) Derive the corresponding transfer function.

b) What are the system poles?

TABLE A.1 Properties of Laplace Transforms	Number	Laplace transform	Time function	Comment
	_	F(s)	f(t)	Transform pair
	1	$\alpha F_1(s) + \beta F_2(s)$	$\alpha f_1(t) + \beta f_2(t)$	Superposition
	2	$F(s)e^{-s\lambda}$	$f(t - \lambda)$	Time delay $(\lambda \ge 0)$
	3	$rac{1}{ a }F\left(rac{s}{a} ight)$	f(at)	Time scaling
	4	F(s+a)	$e^{-at}f(t)$	Shift in frequency
	5	$s^{m}F(s) - s^{m-1}f(0)$ $-s^{m-2}\stackrel{\circ}{f}(0) - \dots - f^{(m-1)}(0)$		
			$f^{(m)}(t)$	Differentiation
	6	$\frac{1}{s}F(s) + \frac{[\stackrel{\circ}{f}(t)dt 0}{s}$	$\int f(\zeta)d\zeta$	Integration
	7	$F_1(s)F_2(s)$	$f_1(t) * f_2(t)$	Convolution
	8	$\lim_{s\to\infty} sF(s)$	f(0+)	Initial-value theorem
	9	$\lim_{s \to 0} sF(s)$	$\lim_{t\to\infty}f(t)$	Final-value theorem
	10	$\frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F_1(\zeta) F_2(s-\zeta) d\zeta$	$f_1(t)f_2f(t)$	Time product
	11	$-\frac{d}{ds}F(s)$	tf(t)	Multiplication by time

Laplace Transform Tables

FABLE A.2 Fable of Laplace Fransforms	Number	F(s)	$f(t), t \ge 0$
	1	1	$\delta(t)$
	2	1/ <i>s</i>	1(t)
	3	$1/s^{2}$	t
	4	$2!/s^3$	t^2
	5	$3!/s^4$	t^3
	6	$m!/s^{m+1}$	t ^m
	7	1/(s + a)	e ^{-at}
	8	$1/(s+a)^2$	te ^{-at}
	9	$1/(s+a)^3$	$\frac{1}{2!}t^2e^{-at}$
	10	$1/(s+a)^m$	$\frac{1}{(m-1)!}t^{m-1}e^{-at}$
	11	$\frac{a}{s(s+a)}$	$1 - e^{-at}$
	12	$\frac{a}{s^2(s+a)}$	$\frac{1}{a}(at-1+e^{-at})$
	13	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at} - e^{-bt}$
	14	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$
	15	$\frac{a^2}{s(s+a)^2}$	$1 - e^{-at}(1 + at)$
	16	$\frac{(b-a)s}{(s+a)(s+b)}$	$be^{-bt} - ae^{-at}$
	17	$a/(s^2 + a^2)$	sin at
	18	$s/(s^2 + a^2)$	cos at
	19	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$
	20	$\frac{b}{(s+a)^2+b^2}$	$e^{-at}\sin bt$
	21	$\frac{a^2+b^2}{s\left[(s+a)^2+b^2\right]}$	$1 - e^{-at} \left(\cos bt + \frac{a}{b} \sin bt \right)$