Mechanical Engineering Department University of New Mexico

Ph.D. Qualifying Examination

Controls Section

Fall
2019

INSTRUCTIONS:

- Closed Book
- There are 4 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You MUST show work to get credit.

Problem 1. (25 points)

The figure shows a mechanical vibratory system. When 2 lb of force (step input) is applied to the system, the mass oscillates, as shown in the figure on the right. Determine m, b, and k of the system from this response curve. The displacement x is measured from the equilibrium position.

(a)

(b)

The formula for the peak time, the time at which $x(t)$ reaches its maximum value is equal to

$$
t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}
$$

Problem 2. (25 points)

A controlled process is modeled by the following state equations.

$$
\frac{d x_{1}(t)}{d t}=x_{1}(t)-2 x_{2}(t) \quad \frac{d x_{2}(t)}{d t}=10 x_{1}(t)+u(t)
$$

The control $u(t)$ is obtained from state feedback such that

$$
u(t)=-k_{1} x_{1}(t)-k_{2} x_{2}(t)
$$

where k_{1} and k_{2} are real constants. Determine the region in the k_{1}-versus- k_{2} parameter plane in which the closed-loop system is asymptotically stable.

Problem 3 (25 points)

For the following transfer function, $\mathrm{G}(\mathrm{s})=\frac{s+1}{s^{2}(s+4)}$
a) Sketch the root locus for $1+\mathrm{KG}(\mathrm{s})=0$
b) Determine the value of K at the pole at the far left of the complex plane.

Problem 4 (25 points)

The dynamic equation follows the below formula.

$$
\mathrm{J} \ddot{\theta}+b \dot{\theta}+2 k L^{2} \sin \theta=\tau
$$

Assume $J=2, b=6, k L^{2}=2$ and small changes in the angle.
a) Derive the Transfer Function
b) For a unit step input, find the solution of θ as a function of time, by setting the initial conditions equal zero.

