Mechanical Engineering Department University of New Mexico

Ph.D. Qualifying Examination

Controls Section

Fall 2013

INSTRUCTIONS:

- Closed Book
- There are 3 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You <u>MUST</u> show work to get credit.

Problem 1. (40 points)

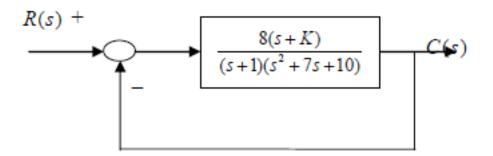
Given the transfer function

$$\frac{c(t)}{r(t)} = \frac{D+4}{D^2+5D+6}$$

where D is a derivative function, determine the response as a function of time to an input $r(t) = 2e^{-t}$ if all initial conditions are zero.

Problem 2. (30 points)

For the following system,



find the values of K that make the system stable

Problem 3. (30 points)

For the following transfer function, create a bode plot, changing the frequency values as needed.

$$\frac{V_{out}}{V_{in}} = \frac{5.82 \times 10^6}{8.1 \times 10^5 + (4 \times 10^{-5})s}$$

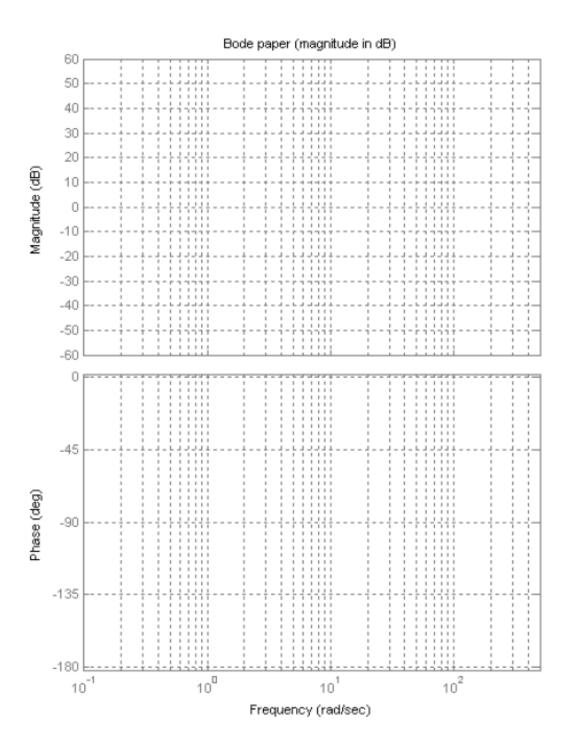


Table 2.1 Laplace transform table				
tem no.	f(t)	F(s)		
1.	$\delta(t)$	1		
2.	u(t)	$\frac{1}{s}$		
3.	tu(t)	$\frac{1}{s^2}$		
4.	$t^n u(t)$	$\frac{n!}{s^{n+1}}$		
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$		
6.	sin wtu(t)	$\frac{\omega}{s^2 + \omega^2}$		
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$		

Table 2.2 Laplace transform theorems

ltem no.	Theorem		Name
1.	$\mathcal{L}[f(t)] = F(s)$	$= \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathcal{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t)+f_2(t)]$	$= F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-al}f(t)]$	= F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$= e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$= \frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - \dot{f}(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[rac{d^nf}{dt^n} ight]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{k-1}(0-)$	Differentiation theorem
0.	$\mathscr{L}\!\!\left[\int_{0-}^{t}\!\!f(\tau)d\tau\right]$	$= \frac{F(s)}{s}$	Integration theorem
1.	$f(\infty)$	$= \lim_{s \to 0} sF(s)$	Final value theorem ¹
2.	f(0+)	$= \lim_{s \to \infty} sF(s)$	Initial value theorem ²

¹ For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts and no more than one can be at the origin. ² For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (i.e., no impulses or their derivatives at t = 0).