Mechanical Engineering Department University of New Mexico Ph.D. Qualifying Examination Controls Section Spring 2018

INSTRUCTIONS:
- Closed Book
- There are 4 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You MUST show work to get credit.

Problem 1 (25 points)

Given the system shown

a) Sketch the root locus for the system as K varies from 0 to +1 . Show ALL important calculations: show clearly the asymptotes, if any are present. Find the breakaway and/or break-in points.
(b) The point $\mathrm{s}=-0.5$ is on the root locus. Find the gain K that corresponds to that pole location.

Problem 2 (25 points)

Given the unity feedback system with

find the following:
(a) The range of K that keeps the system stable;
(b) the value of K that makes the system oscillate; and
(c) the frequency of oscillation when K is set to the value found in (b).

Problem 3 (25 points)

Determine the values of K and k of the closed loop system in the figure so that the maximum overshoot in unit-step response is 25% and the peak time is 2 sec . Assume $J=1$ $\mathrm{kg} \mathrm{m}{ }^{2}$.

Problem 4 (25 points)

Consider the feedback control system in the figure. Determine the value of K such that the phase margin is 50°. What is the gain margin in this case?

Name	Time function, $f(t)$	Laplace transform, $F(s)$
Unit impulse	$\delta(t)$	1
Unit step	$u(t)$	$\frac{1}{s}$
Unit ramp	t	$\frac{1}{s^{2}}$
n th-order ramp	t^{n}	$\frac{n!}{s^{n+1}}$
Exponential	$e^{-a t}$	$\frac{1}{s+a}$
n th-order exponential	$t^{n} e^{-a t}$	$\frac{n!}{(s+a)^{n+1}}$
Sine	$\sin b t$	$\frac{b}{s^{2}+b^{2}}$
Cosine	$\cos b t$	$\frac{s}{s^{2}+b^{2}}$
Damped sine	$e^{-a t} \sin b t$	$\frac{b}{(s+a)^{2}+b^{2}}$
Damped cosine	$e^{-a t} \cos b t$	$\frac{s+a}{(s+a)^{2}+b^{2}}$
Diverging sine	$t \sin b t$	$\frac{2 b s}{\left(s^{2}+b^{2}\right)^{2}}$
Diverging cosine	$t \cos b t$	$\frac{s^{2}-b^{2}}{\left(s^{2}+b^{2}\right)^{2}}$

TABLE 2.2 Laplace transform theorems

Item no.	Theorem	Name
1.	$\mathscr{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t$	Definition
2.	$\mathscr{L}[k f(t)] \quad=k F(s)$	Linearity theorem
3.	$\mathscr{L}\left[f_{1}(t)+f_{2}(t)\right]=F_{1}(s)+F_{2}(s)$	Linearity theorem
4.	$\mathscr{L}\left[e^{-a t} f(t)\right]=F(s+a)$	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]=e^{-s T} F(s)$	Time shift theorem
6.	$\mathscr{L}[f(a t)] \quad=\frac{1}{a} F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{d f}{d t}\right] \quad=s F(s)-f(0-)$	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^{2} f}{d t^{2}}\right] \quad=s^{2} F(s)-s f(0-)-f^{\prime}(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^{n} f}{d t^{n}}\right] \quad=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau) d \tau\right]=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty) \quad=\lim _{s \rightarrow 0} s F(s)$	Final value theorem ${ }^{1}$
12.	$f(0+) \quad=\lim _{s \rightarrow \infty} s F(s)$	Initial value theorem ${ }^{2}$

${ }^{1}$ For this theorem to yield correct finite results, all roots of the denominator of $F(s)$ must have negative real parts, and no more than one can be at the origin.
${ }^{2}$ For this theorem to be valid, $f(t)$ must be continuous or have a step discontinuity at $t=0$ (that is, no impulses or their derivatives at $t=0$).

