Mechanical Engineering Department University of New Mexico Ph.D. Qualifying Examination Controls Section Spring 2018

INSTRUCTIONS:

- Closed Book
- There are 4 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You *MUST* show work to get credit.

Problem 1 (25 points)

Given the system shown

a) Sketch the root locus for the system as K varies from 0 to +1. Show ALL important calculations: show clearly the asymptotes, if any are present. Find the breakaway and/or break-in points.

(b) The point s = -0.5 is on the root locus. Find the gain K that corresponds to that pole location.

Problem 2 (25 points)

Given the unity feedback system with

find the following:

(a) The range of K that keeps the system stable;(b) the value of K that makes the system oscillate; and(c) the frequency of oscillation when K is set to the value found in (b).

Problem 3 (25 points)

Determine the values of *K* and *k* of the closed loop system in the figure so that the maximum overshoot in unit-step response is 25% and the peak time is 2 sec. Assume J=1 kg m².

Problem 4 (25 points)

Consider the feedback control system in the figure. Determine the value of K such that the phase margin is 50°. What is the gain margin in this case?

Name	Time function, $f(t)$	Laplace transform, $F(s)$
Unit impulse	$\delta(t)$	1
Unit step	u(t)	$\frac{1}{s}$
Unit ramp	t	$\frac{1}{s^2}$
nth-order ramp	l^n	$\frac{n!}{s^{n+1}}$
Exponential	e ^{-at}	$\frac{1}{s+a}$
nth-order exponential	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
Sine	sinbt	$\frac{b}{s^2+b^2}$
Cosine	cosbt	$\frac{s}{s^2+b^2}$
Damped sine	$e^{-at} \sinh t$	$\frac{b}{(s+a)^2+b^2}$
Damped cosine	e^{-at} cosbt	$\frac{s+a}{(s+a)^2+b^2}$
Diverging sine	t sin bt	$\frac{2bs}{(s^2+b^2)^2}$
Diverging cosine	$t\cos bt$	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$ 12

ltem no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F$	$(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t) + f_2]$	$[t_{2}(t)] = F_{1}(s) + F_{2}(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$=s^{2}F(s)-sf(0-)-f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^{n}f}{dt^{n}}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t}f(\tau)d\right]$	$[\tau] = \frac{F(s)}{r}$	Integration theorem
11.	$f(\infty)$	$=\lim_{n \to \infty} sF(s)$	Final value theorem ¹
12.	f(0+)	$=\lim_{s\to\infty}^{s\to0} sF(s)$	Initial value theorem ²
¹ For this theor parts, and no	em to yield correct more than one car	t finite results, all roots of the denominate n be at the origin.	or of $F(s)$ must have negative real
² For this theo	rem to be valid, f	(t) must be continuous or have a step $t = 0$.	liscontinuity at $t = 0$ (that is, no