Mechanical Engineering Department University of New Mexico

Ph.D. Qualifying Examination

Controls Section

Spring 2015

INSTRUCTIONS:

- Closed Book
- There are 3 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You <u>MUST</u> show work to get credit.

Problem 1. (30 points)

Derive the transfer function the following system, where force is the input and x(t) is the response:

Problem 2. (30 points)

For the following system, compute analytically the response of the system to a step input as a function of time.

$$G(s) = \frac{9}{s^2 + 9s + 9}$$

Problem 3. (40 points) For the system shown

with

$$G(s) = \frac{10(s+10)}{s(s+2)}$$
$$H(s) = (s+1)$$

Find the following:

- a) The system type
- b) The appropriate static error constant
- c) The steady state error for a unit input of the waveform which yields a nonzero constant error

ltem no.	f(t)	F(s)	
1.	$\delta(t)$	1	
2.	u(t)	$\frac{1}{s}$	
3.	tu(t)	$\frac{1}{s^2}$	
4.	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$	
6.	sin wtu(t)	$\frac{\omega}{s^2 + \omega^2}$	
7.	cos wtu(t)	$\frac{s}{s^2 + s^2}$	

Table 2.2 Laplace transform theorems

ltem no.	Theorem		Name
1.	$\mathcal{L}[f(t)] = F(s)$	$= \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathcal{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t)+f_2(t)]$	$= F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	= F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$= e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$= \frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\!\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - \dot{f}(0-)$	Differentiation theorem
9.	$\mathscr{L}\!\left[\frac{d^n f}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau) d\tau\right]$	$= \frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$= \lim_{s \to 0} sF(s)$	Final value theorem ¹
12.	<i>f</i> (0+)	$= \lim_{s \to \infty} sF(s)$	Initial value theorem ²

¹ For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts and no more than one can be at the origin. ² For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (i.e., no impulses or their derivatives at t = 0).