Mechanical Engineering Department University of New Mexico

Ph.D. Qualifying Examination

Controls Section

Spring 2016

INSTRUCTIONS:

- Closed Book
- There are 4 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You <u>MUST</u> show work to get credit.

Problem 1. (25 points)

Sketch the root locus for the system in the figure:

Explain which rules you applied.

Item no.	f(t)	F(s)	
	1		
1.	$\delta(t)$	1	
2.	u(t)	$\frac{1}{s}$	
3.	tu(t)	$\frac{1}{s^2}$	
4.	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$	
6.	sin wtu(t)	$\frac{\omega}{s^2+\omega^2}$	
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$	

Table 2.2 Laplace transform theorems

ltem no.	Theorem		Name
1.	$\mathcal{L}[f(t)] = F(s)$	$= \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathcal{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t)+f_2(t)]$	$= F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	= F(s + a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$= e^{-sT}F(s)$	Time shift theorem
6.	$\mathcal{L}[f(at)]$	$= \frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - \dot{f}(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[rac{d^n f}{dt^n} ight]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau) d\tau\right]$	$= \frac{F(s)}{s}$	Integration theorem
11.	<i>f</i> (∞)	$= \lim_{s \to 0} sF(s)$	Final value theorem ¹
12.	<i>f</i> (0+)	$= \lim_{s \to \infty} sF(s)$	Initial value theorem ²

¹ For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts and no more than one can be at the origin. ² For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (i.e., no impulses or their derivatives at t = 0).

Problem 2. (25 points)

Sketch the asymptotic Bode plots for the transfer function

$$G(s) = \frac{10(s+3)}{s(s+0.2)(s^2+15s+100)}$$

Use the graph paper on the following page.

Problem 3 (25 points)

For the unity feedback system shown below,

(a) specify the gain K of the compensator so that the overall closed-loop response to a unit-step input has a damping ratio of 0.517,

(b) for the value of K in (a) compute the peak-time, T_p , and damped frequency, ω_d .

Problem 4 (25 points)

Using the Routh table determine the values of K > 0 and a > 0 so that the unity feedback system shown oscillates at a frequency 3 rad/s, when

$$G(s) = \frac{K(s+1)}{s^3 + as^2 + 3s + 1}$$

$$R(s) + G(s) - G(s)$$

Name	Time function, $f(t)$	Laplace transform, F(s)
Unit impulse	$\delta(t)$	1
Unit step	u(t)	$\frac{1}{s}$
Unit ramp	t	$\frac{1}{s^2}$
<i>n</i> th-order ramp	t^n	$\frac{n!}{s^{n+1}}$
Exponential	e^{-at}	$\frac{1}{s+a}$
nth-order exponential	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
Sine	sinbt	$\frac{b}{s^2+b^2}$
Cosine	cosbt	$\frac{s}{s^2+b^2}$
Damped sine	$e^{-at} \sinh bt$	$\frac{b}{(s+a)^2+b^2}$
Damped cosine	$e^{-at} \cos bt$	$\frac{s+a}{(s+a)^2+b^2}$
Diverging sine	t sin bt	$\frac{2bs}{(s^2+b^2)^2}$
D	t and ht	$s^2 - b^2$

Item no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$=\int_{0-}^{\infty}f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathscr{L}[f_1(t) + f_2(t)]$	$] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathscr{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^{n}f}{dt^{n}}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau)d\tau\right]$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$=\lim_{s\to\infty}sF(s)$	Initial value theorem ²
¹ For this the parts, and n ² For this the	orem to yield correct fit o more than one can be eorem to be valid, $f(t)$	nite results, all roots of the denominate be at the origin. must be continuous or have a step o	or of $F(s)$ must have negative readiscontinuity at $t = 0$ (that is, no

Table 2.2 © John Wiley & Sons, Inc. All rights reserved.