Mechanical Engineering Department University of New Mexico

Ph.D. Qualifying Examination

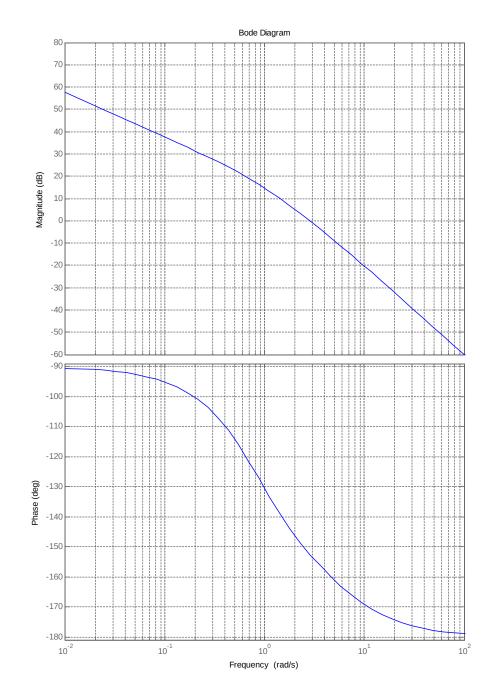
Controls Section

Spring 2021

INSTRUCTIONS:

- Closed Book
- There are 4 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You <u>MUST</u> show work to get credit

Problem 1 (25 pts)



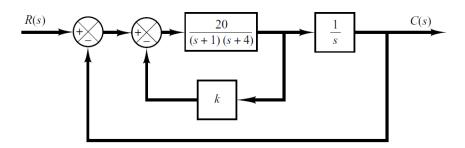
The Bode plot of a plant G(s) is given below.

Consider the closed loop system of placing G(s) in a unity feedback and answer the following.

- a) The range of ^k, placed on the feedforward line as a proportional controller, using which the closed loop system is stable is given by
- b) The maximum delay introduced in the control loop before destabilizing the system is
- c) The damping ratio of the closed loop systems is roughly equal to
- d) The bandwidth of the closed loop system is roughly equal to
- e) The steady state error of the closed loop system to a unit step is
- f) The steady state error of the closed loop system to a ramp is

Problem 2 (25 pts)

Sketch (roughly) the location of the poles of the overall system given below, as k changes from zero to infinity.

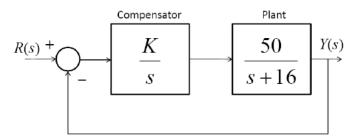


Problem 3 (25 points)

For the unity feedback system shown below,

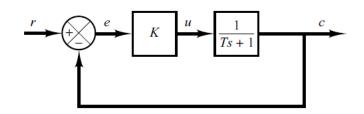
(a) specify the gain K of the compensator so that the overall closed-loop response to a unit-step input has a damping ratio of 0.517,

(b) for the value of K in (a) compute the peak-time, T_p , and damped frequency, ω_d .



Problem 4. (25 points)

Consider the plant in the figure. Consider two reference signals: $r_1(t) = I(t)$, the unit-step function, and $r_2(t) = t^*I(t)$, the ramp function. Can you quantify the steady state errors in both cases?



Name	Time function, $f(t)$	Laplace transform, $F(s)$
Unit impulse	$\delta(t)$	1
Unit step	u(t)	$\frac{1}{s}$
Unit ramp	t	$\frac{1}{s^2}$
nth-order ramp	<i>t</i> ⁿ	$\frac{n!}{s^{n+1}}$
Exponential	e^{-at}	$\frac{1}{s+a}$
<i>n</i> th-order exponential	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
Sine	sinbt	$\frac{b}{s^2 + b^2}$
Cosine	cosbt	$\frac{s}{s^2+b^2}$
Damped sine	$e^{-at} \sinh t$	$\frac{b}{(s+a)^2+b^2}$
Damped cosine	$e^{-at} \cos bt$	$\frac{s+a}{(s+a)^2+b^2}$
Diverging sine	$t \sin bt$	$\frac{2bs}{(s^2+b^2)^2}$
Diverging cosine	$t\cos bt$	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$ 12

Item no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(t)$	$s) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathscr{L}[f_1(t) + f_2(t)]$	$[t] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]$	$= e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t}f(\tau)d\tau\right]$	$\left[F\right] = \frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0}^{5} sF(s)$	Final value theorem ¹
12.		$=\lim_{s\to\infty}sF(s)$	Initial value theorem ²
	rem to yield correct more than one can	finite results, all roots of the denominate be at the origin.	or of $F(s)$ must have negative rea
	brem to be valid, $f(t)$	t) must be continuous or have a step $d = 0$	is continuity at $t = 0$ (that is, no

Table 2.2 © John Wiley & Sons, Inc. All rights reserved.