Mechanical Engineering Department University of New Mexico

Ph.D. Qualifying Examination

Controls Section

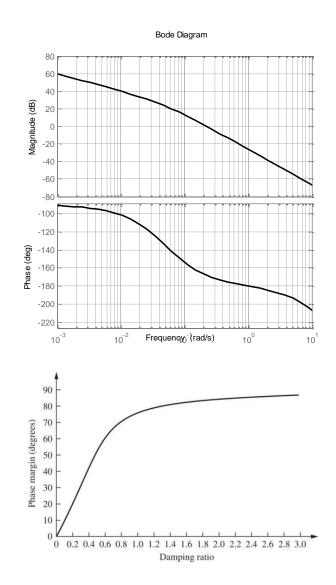
July, 2022

INSTRUCTIONS:

- Closed Book
- There are 4 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You <u>MUST</u> show work to get credit

Problem 1 (25 points)

Using the open loop plant whose Bode plot is given below, design a **Lag Compensator** such that the performance of the closed loop system meets both of the following metrics: a) the steady state error to a ramp is decreased to 1/10 of the uncompensated steady state error, b) The damping ratio of the system is around 0.4.



Problem 2 (25 points)

Match the transfer function on the left with its unit step response on the right.

$$(i) \frac{5}{s+1}$$

$$(ii) \frac{1}{s^{2}+4}$$

$$(iii) \frac{14^{2}}{s^{2}+2 \cdot 0.7 \cdot 14s+14^{2}}$$

$$(iv) \frac{16}{s^{2}+1.6s+16}$$

$$(v) \frac{10}{(s+10)}$$

$$(v) \frac{10}{(s+10)}$$

$$(i) \frac{5}{s+1}$$

$$(iii) \frac{14^{2}}{s^{2}+2 \cdot 0.7 \cdot 14s+14^{2}}$$

$$(iii) \frac{14^{2}}{s^{2}+1.6s+16}$$

$$(iii) \frac{16}{s^{2}+1.6s+16}$$

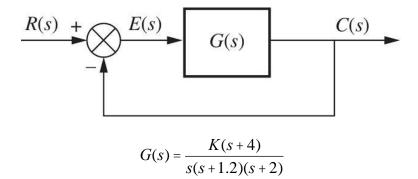
$$(iii) \frac{16}{s^{2}+1.6s+16}$$

$$(iii) \frac{16}{s^{2}+1.6s+16}$$

$$(iii) \frac{16}{s^{2}+1.6s+16}$$

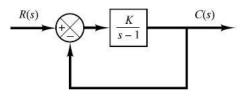
Problem 3 (25 points)

For the given unity feedback system find the range of K that keeps the system stable.



Problem 4 (25 points)

Consider the closed-loop system in the figure. Determine the critical value of K for stability using Nyquist stability criterion.



Name	Time function, $f(t)$	Laplace transform, $F(s)$
Unit impuls	e δ(<i>t</i>)	1
Unit step	u(t)	$\frac{1}{s}$
Unit ramp	t	$\frac{1}{s}$ $\frac{1}{s^2}$
<i>n</i> th-order ra	mp t ⁿ	$\frac{n!}{s^{n+1}}$
Exponential	e^{-at}	$\frac{1}{s+a}$
nth-order e	aponential $t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
Sine	sinbt	$\frac{b}{s^2+b^2}$
Cosine	cosbt	$\frac{s}{s^2+b^2}$
Damped sin	e $e^{-at} \sinh t$	$\frac{b}{(s+a)^2+b^2}$
Damped cos	$e^{-at}\cos bt$	$\frac{s+a}{(s+a)^2+b^2}$
Diverging si	ne $t \sin bt$	$\frac{2bs}{(s^2+b^2)^2}$
Diverging co	osine $t\cos bt$	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$

Item no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$f(t) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathscr{L}[f_1(t) + f_2(t)]$	$[t] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^{n}f}{dt^{n}}\right]$	$= s^{2}F(s) - sf(0-) - f'(0-)$ $= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t}f(\tau)d\tau\right]$		Integration theorem
11.		$=\lim_{s\to 0} sF(s)$	Final value theorem ¹
12.	f(0+)		Initial value theorem ²
parts, and no	more than one can	inite results, all roots of the denominate be at the origin.) must be continuous or have a step c	

Table 2.2 © John Wiley & Sons, Inc. All rights reserved.