Mechanical Engineering Department University of New Mexico

Ph.D. Qualifying Examination

Controls Section

Fall 2017

INSTRUCTIONS:

- Closed Book
- There are 4 problems worth a total of 100 points
- 2 Hours
- Calculator allowed
- You <u>MUST</u> show work to get credit.

Problem 1. (25 points)

Determine the values of *K* and *k* for the closed loop system shown in the figure so that when the input is the unit step function, the maximum overshoot is 25% and the peak time is 2 sec. Assume that $J=1 \text{ kg m}^2$.

Problem 2. (25 points)

Sketch the root locus for the system with transfer function:

$$G(s) = \frac{6(s+1)}{s^2(s+2)(s+3)}$$

Explain which rules you applied.

Problem 3 (25 points)

For the given unity feedback system find the range of K that keeps the system stable.

Problem 4 (25 points)

The following unity feedback system is to follow a ramp input, r(t) = tu(t), so that the steadystate error is 0.01. The natural frequency of the closed-loop system will be $\omega_n = 5$ rad/s. What is the system type? Determine the values of K and α .

Name	Time function, $f(t)$	Laplace transform, $F(s)$
Unit impulse	$\delta(t)$	1
Unit step	u(t)	$\frac{1}{s}$
Unit ramp	t	$\frac{1}{s^2}$
<i>n</i> th-order ramp	l^n	$\frac{n!}{s^{n+1}}$
Exponential	e^{-at}	$\frac{1}{s+a}$
nth-order exponential	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
Sine	sinbt	$\frac{b}{s^2+b^2}$
Cosine	cosbt	$\frac{s}{s^2+b^2}$
Damped sine	$e^{-at} \sinh t$	$\frac{b}{(s+a)^2+b^2}$
Damped cosine	$e^{-at} \cos bt$	$\frac{s+a}{(s+a)^2+b^2}$
Diverging sine	t sin bt	$\frac{2bs}{(s^2+b^2)^2}$
Diverging cosine	t cos bt	$\frac{b^2}{b^2} = b^2$

nem no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$=\int_{0-}^{\infty}f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathscr{L}[f_1(t) + f_2(t)]$	$[] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^{n}f}{dt^{n}}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau)d\tau\right]$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$=\lim_{s\to\infty}sF(s)$	Initial value theorem ²
¹ For this the parts, and n ² For this th	Forem to yield correct fin o more than one can be corem to be valid, $f(t)$	nite results, all roots of the denominate be at the origin. must be continuous or have a step c	or of $F(s)$ must have negative real discontinuity at $t = 0$ (that is, no

Table 2.2 © John Wiley & Sons, Inc. All rights reserved.