Mechanical Engineering Department
 University of New Mexico
 Ph.D. Qualifying Examination
 Dynamics Section
 Spring 2020

INSTRUCTIONS:

- Time allowed: 2 hours
- Closed book and closed notes; one sheet (8.50×11.00 in, 2 -sided) of formulas is allowed
- There are 4 problems worth a total of 100 points
- You MUST show and explain work to get credit
- Calculator allowed
- Laptops, cell phones, and similar electronic devices are not allowed

1. (25) The figure shown models a crankshaft and piston. The crankshaft has a radius, R, and is rotating at a constant angular velocity, Ω, such that $\theta=\Omega t$. The piston rod's length is L. Determine the linear velocity of the piston, \dot{x}, in terms of the crankshaft angular velocity, Ω and time, t.

2. (25) The 12 kg slender rods are pin connected and released from rest at the position $\theta=60^{\circ}$. If the spring has an unstretched length of 1.5 m , determine the angular velocity of rod $B C$, when the system is at the position $\theta=0^{\circ}$. Neglect the mass of the roller at C.

Problem 3.

The $25-\mathrm{kg}$ slider is released from the position shown with a velocity of $v_{0}=0.6 \mathrm{~m} / \mathrm{s}$ on the inclined rail and slides under the influence of gravity and friction. The coefficient of friction between the slider and the rail is $f=0.5$. Calculate the velocity of the slider as it passes the position for which the spring is compressed a distance $x=100 \mathrm{~mm}$. The spring offers a compressive resistance C and is known as a "hardening" spring, since its stiffness increases with deflection as given by $C=16 x+0.06 x^{2}$.

Problem 4.

A particle of mass m starts from rest and moves in a horizontal straight line under the action of a constant force P. Resistance to motion is proportional to the square of the velocity and is $R=k v^{2}$. Determine the total impulse I on the particle from the time it starts until it reaches its maximum velocity.

