PhD Qualifying Exam

Fall 2013

DYNAMICS

- 1. There are a total of 4 problems.
- 2. Duration: 2.5 hours
- 3. Closed book, closed notes (one sheet of formulas is allowed).
- 4. Show your work on these exam sheets. (Add additional sheets, if needed.)
- 5. You may use a calculator.
- 6. Laptops and cell phones are not allowed.

Each of the sliding blocks has a constant velocity $0.6\,$ m/s, A to the right and C to the left. Determine the magnitude of the velocity of pin B at the instant when $x=120\,$ mm.

The load L is being elevated by the downward velocities of ends A and B of the cable. Determine the acceleration of point P on the top of the sheave for the instant when $v_A=2$ ft/sec, $\dot{v}_A=0.5$ ft/sec², $v_B=3$ ft/sec, $\dot{v}_B=-0.5$ ft/ sec².

A small sphere of mass m is at rest on top of a frictionless semi-cylindrical surface. The sphere is given a slight nudge to the right so that it slides along the surface. Determine the angle at which the sphere separates from the surface.

A stick of length L and mass m is in equilibrium while standing on its end A when end B is gently nudged to the right, causing the stick to fall. Model the stick as a uniform slender bar with $I_G = \frac{1}{12} m \, L^2 \, \text{ and assume that there is friction between the stick and the ground. If the static coefficient of friction is <math>\mu_S$. Find the value of the angle θ at which the stick starts to slide.

(Hint: Find the normal and frictional forces and use dynamic equilibrium to find the forces as a function of θ , $\dot{\theta}$ and $\ddot{\theta}$. Then use work-energy to find $\dot{\theta}(\theta)$ and $\ddot{\theta}(\theta)$ and hence the forces as a function of θ).

