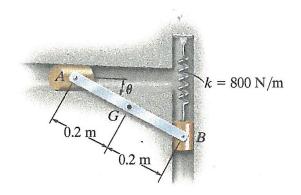

1. Determine the tension developed in the cords attached to each block and the accelerations of the blocks. Neglect the mass of the pulleys and cords.


2. A 2 kg sphere is projected horizontally with a velocity of 10 m/s against the 10 kg carriage, which is backed up by a spring with a stiffness of 1600 N/m. The carriage is initially at rest with the spring uncompressed. If the coefficient of restitution is 0.6, calculate the rebound velocity v', the rebound angle θ and the maximum travel of the carriage δ .

3. The 50lb wheel shown has a radius of gyration k_g =0.70 ft. If a 35-lb-ft couple is applied to the wheel, determine the acceleration of its mass center *G*. The coefficients of static and kinetic friction at *A* are $\mu_s = 0.3$ and $\mu_k = 0.25$ respectively.

4. The 10-kg rod shown is constrained so that its ends move in the horizontal and vertical slots. The spring has a stifness k = 800 N/m and is unstretched when $\theta = 0$. Determine the angular velocity of *AB* when $\theta = 0$, if the rod is released from rest when $\theta = 30$. Neglect the mass of the sliders blocks.

