University of New Mexico Mechanical Engineering Fall 2012 PhD qualifying examination Heat Transfer

Closed book. Formula sheet and calculator are allowed, but not cell phones, computers or any other wireless device. Time allowed: 150 minutes. Part 1: General knowledge questions (25 points)

- 1. Nusselt number...
 - (a) is a measure of heat transfer enhancement via convection (as compared with conduction).
 - (b) is the ratio of thermal to mechanical dissipation.
 - (c) equals the ratio of convective heat transfer coefficient h to conducivity k.

Answer:

- 2. Objects that radiate relatively well
 - (a) always absorb radiation relatively well.
 - (b) reflect radiation relatively well.
 - (c) have a high emissivity ε .

Answer:

- 3. Why do ceramic tiles in a kitchen or bathroom feel cooler than a floor mat?
 - (a) ceramic has a lower thermal conductivity value.
 - (b) ceramic has a higher contact area with your feet.
 - (c) ceramic has a higher thermal conductivity value

Answer:

- 4. The cooking instructions for turkeys always always tell us to measure temperature deep inside the turkey. From this, we can infer that, for the typical baking conditions:
 - (a) the Biot number is low
 - (b) the Biot number is high
 - (c) the thermometer will fall off unless we stick it in deep enough

Answer:

- 5. Why is it acceptable to use only one term in the infinite series solution for transient problems with large Biot numbers, if the Fourier number is large?
 - (a) the high-frequency terms in the solution decay quickly with time
 - (b) the low-frequency terms in the solution decay quickly with time
 - (c) the Krylov space of the higher terms is range-deficient and therefore does not contribute to the solution

Answer:

- 6. In a process where heat is removed by nucleate boiling, it is generally important to make sure that the critical heat flux is not exceeded. This is because:
 - (a) if critical flux is exceeded, the boiling process could become unstable and create excessive vibration on the system
 - (b) Exceeding the critical flux may result in a reduction in the temperature, leading to reduced heat transfer
 - (c) Exceeding the critical heat flux results in an almost instantaneous very large increase in temperature

Answer:

- 7. Certain frypans have a thick metal handle rather than a wooden one. This is because:
 - (a) A thick metal handle dissipates heat better and is therefore cooler
 - (b) The frypan can be placed directly in the oven
 - (c) The frypan is better balanced

Answer:

- 8. Birds "fluff" their feathers while perching in cold weather because:
 - (a) They tend to preen more in the winter because there is less to do
 - (b) Feathers standing on end provide a thicker layer of still air with better insulating properties
 - (c) they are trying to deter predators by looking bigger

Answer:

- 9. There exists an optimum fin spacing for arrays of naturally convecting fins. This is because:
 - (a) placing fins closer together enhances natural convection
 - (b) placing fins further apart enhances natural convection
 - (c) placing fins closer together degrades natural convection, but increases the available area for heat transfer

Answer:

- 10. Doubling the length of a pin fin results in:
 - (a) a doubling of the heat transfer from the fin
 - (b) no change
 - (c) an increase in heat transfer by a factor smaller than 2

Answer:

Part 2: Problems (25 points per question) Attempt all problems in this section, clearly stating any assumptions and simplifications used in your solution.

Problem 1

Given: A mild carbon steel plate (AISI 1042) of thickness 1 cm at a temperature 600° C is rapidly immersed in an oil bath at 30° C. The average convective heat transfer coefficient between the plate and the oil is known to be about 400W/m²K.

Find: The time it will take for the plate to cool to 90°C.

Note: For steel, assume $\rho = 7800 \text{ kg/m}^3$, c = 450 J/(kg K). Also use the attached tables if necessary. Justify your assumptions regarding the method of solution.

Problem 2

Given: A 20-m steam pipe is insulated on the outside with a layer of 85% magnesia insulation. The pipe wall thickness is 7 mm, the outer diameter of the pipe is 150 mm, the insulation layer thickness is 50 mm. The pipe is made of AISI 1010 mild steel. Inside the pipe, superheated steam flows at 230°C, with the convective heat transfer coefficient between the steam flow and the inner wall of the pipe 35 W/m²K. On the outside of the pipe, the ambient temperature is 20°C. The convection coefficient between the insulated pipe and the surroundings is 8 W/m²K.

Find: Heat dissipated from the pipe to the surroundings.

Note: Use the attached tables for reference.

Problem 3

A black sphere of diameter 2.5 cm is at thermal equilibrium when the quiescent air surrounding it is at 20° C, and the walls of a large surrounding enclosure are at 1000K. What is the temperature of the sphere?

Note: The Stefan-Boltzmann constant σ is approximately $5.67 \times 10^{-8} \text{W/m}^2 \text{K}^4$.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Temperature, K								
Aluminum Pure 237 237 240 236 231 218 Pure 138 174 187 188 185	Metal	200	300	400	500	600	800	1000	1200	1500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Aluminum									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pure	237	237	240	236	231	218			
Alloy 195, cast168174180185Copper Pure413401393386379366352339Commercial bronze4252525555Brass74111134143146150German silver116135145147Gold323317311304298284270255Iron311304298284270255Cast5144393627232931AISI 1010645954493931AISI 10425250484537292630AISI 1010645954493931AISI 10125250484537292630AISI 1010645954493931AISI 302151719202325AISI 302151719202325AISI 316131517182124AISI 30413151718202325AISI 31613151149146AISI 30413151718202524.027.630.0Nickel13151149146140140140140Pure<	Duralumin	138	174	187	188					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Alloy 195, cast		168	174	180	185				
Pure413401393386379366352339Commercial bronze4252525555Brass74111134143146150German silver116135145147Gold323317311304298284270255IronArmco817366595342322931Cast5144393627232324Carbon steels	Copper									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pure	413	401	393	386	379	366	352	339	
Brass German silver74111134143146150Gold323317311304298284270255IronArmco817366595342322931Cast51443936272323232731Cast5144393627232324270255Cast5144393627232630AISI 101064595449393131311AISI 10425250484537292630AISI 3021517192023254183131517AISI 3021517182023252526272729Lead373534333131313331Magnesium7226666872768390Nickel7272727376798390Nickel737272727376798390Silver420429425419412396379361Tanalum73676260798390Silver420429425419412396<	Commercial bronze	42	52	52	55					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Brass	74	111	134	143	146	150			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	German silver		116	135	145	147				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gold	323	317	311	304	298	284	270	255	
Armco 81 73 66 59 53 42 32 29 31 Cast 51 44 39 36 27 23 23 31 Carbon steels 44 39 36 27 23 26 30 AISI 1010 64 59 54 49 39 31 $AISI$ 1042 52 50 48 45 37 29 26 30 AISI 1042 52 50 48 45 37 29 26 30 AISI 1042 52 50 48 45 37 29 26 30 AISI 302 27 31 Stainless steels 25 26 27 27 23 AISI 304 21 24 43 42 41 40 37 31 27 31 AISI 304 25 26 27 27 29 26 30 AISI 410 43 33 31 413 15 151 149 146 413 416 17 21 27 6 83 Nickel 27 76 79 83	Iron									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Armco	81	73	66	59	53	42	32	29	31
$\begin{array}{c} \begin{array}{c} \mbox{Carbon steels} \\ \mbox{AISI 1010} & 64 & 59 & 54 & 49 & 39 & 31 \\ \mbox{AISI 1042} & 52 & 50 & 48 & 45 & 37 & 29 & 26 & 30 \\ \mbox{AISI 4130} & 43 & 42 & 41 & 40 & 37 & 31 & 27 & 31 \\ \hline \mbox{Stainless steels} \\ \mbox{AISI 302} & 15 & 17 & 19 & 20 & 23 & 25 \\ \mbox{AISI 304} & 13 & 15 & 17 & 18 & 20 & 23 & 25 \\ \mbox{AISI 304} & 13 & 15 & 17 & 18 & 21 & 24 \\ \mbox{AISI 316} & 13 & 15 & 17 & 18 & 21 & 24 \\ \mbox{AISI 410} & 25 & 25 & 26 & 27 & 27 & 29 \\ \mbox{Lead} & 37 & 35 & 34 & 33 & 31 \\ \mbox{Magnesium} \\ \mbox{Pure} & 199 & 156 & 153 & 151 & 149 & 146 \\ \mbox{Alloy A8} & 84 \\ \mbox{Nickel} \\ \mbox{Pure} & 105 & 91 & 80 & 72 & 66 & 68 & 72 & 76 & 83 \\ \mbox{Income} & 13 & 14 & 16 & 17 & 21 \\ \mbox{Platnum} & 73 & 72 & 72 & 73 & 76 & 79 & 83 & 90 \\ \mbox{Silver} & 420 & 429 & 425 & 419 & 412 & 396 & 379 & 361 \\ \mbox{Tantalum} & 58 & 58 & 58 & 59 & 59 & 59 & 60 & 61 & 62 \\ \mbox{Tin} & 73 & 67 & 62 & 60 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 22 & 20 & 20 & 19 & 19 & 21 & 22 & 25 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 22 & 20 & 20 & 19 & 19 & 21 & 22 & 25 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 22 & 20 & 20 & 19 & 19 & 21 & 22 & 25 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 22 & 20 & 20 & 19 & 19 & 21 & 22 & 25 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 22 & 20 & 20 & 19 & 19 & 21 & 22 & 25 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 22 & 20 & 20 & 19 & 19 & 21 & 22 & 25 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 23 & 22 & 21 & 21 & 21 & 23 & 26 & 29 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 23 & 22 & 21 & 21 & 21 & 23 & 26 & 29 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 23 & 22 & 21 & 21 & 21 & 23 & 26 & 29 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 23 & 22 & 21 & 21 & 21 & 23 & 26 & 29 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 23 & 22 & 21 & 21 & 21 & 23 & 26 & 29 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 23 & 22 & 21 & 21 & 21 & 23 & 26 & 29 \\ \mbox{Titanium} & \\ \mbox{Pure} & 25 & 23 & 22 & 21 & 21 & 21 & 23 & 26 & 29 \\ \mbox{Titanium} & \\ \mbox{Titanium} & \\ \mbox{Titanium} & \\ \mbox{Titanium} & \\$	Cast		51	44	39	36	27	23		
AISI 1010 64 59 54 49 39 31 AISI 1042 52 50 48 45 37 29 26 30 AISI 4130 43 42 41 40 37 31 27 31 Stainless steelsAISI 302 15 17 19 20 23 25 AISI 304 13 15 17 18 20 23 25 AISI 316 13 15 17 18 21 24 AISI 410 25 25 26 27 27 29 Lead 37 35 34 33 31 Magnesium 99 156 153 151 149 146 Pure 199 156 153 151 149 146 Alloy A8 84 84 84 Nickel 72 72 76 83 90 Pure 105 91 80 72 66 68 72 76 83 Inconel-X-750 10.3 11.7 13.5 15.1 17.0 20.5 24.0 27.6 30.0 Nichrome 13 14 16 17 21 21 22 25 Intainum 58 58 59 59 59 60 61 62 Tin 73 67 62 60 71 21 22 25 25 23 22 21 23 <td>Carbon steels</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Carbon steels									
AISI 1042 52 50 48 45 37 29 26 30 AISI 4130 43 42 41 40 37 31 27 31 Stainless steelsAISI 30215 17 19 20 23 25 AISI 30413 15 17 18 20 23 25 AISI 31613 15 17 18 21 24 AISI 410 25 25 26 27 27 29 Lead, 37 35 34 33 31 MagnesiumPure 199 156 153 151 149 146 Alloy A8 84 NickelPure 105 91 80 72 66 68 72 76 83 Inconel-X-750 10.3 11.7 13.5 15.1 17.0 20.5 24.0 27.6 30.0 Nichrome 13 14 16 17 21 21.2 25 Pathalum 73 72 72 73 76 79 83 90 Silver 420 429 425 419 412 396 379 361 Tantalum 58 58 59 59 59 60 61 62 Tin 73 67 62 60 71 21 22 25 Tindium 73 67 62 60 71 <td< td=""><td>AISI 1010</td><td></td><td>64</td><td>59</td><td>54</td><td>49</td><td>39</td><td>31</td><td></td><td></td></td<>	AISI 1010		64	59	54	49	39	31		
AISI 41304342414037312731Stainless steelsAISI 302151719202325AISI 30413151718202325AISI 31613151718202325AISI 410252526272729Lead3735343331MagnesiumPure199156153151149146Alloy A88484NickelPure1059180726668727683Inconel-X-75010.311.713.515.117.020.524.027.630.0Nichrome1314161721171890Silver420429425419412396379361Tantalum5858595960616217Pure252220201919212225Ti-6AI-4V5.8100185174159146137125118112106Vironium185174159146137125118112106Pure252322212121232629Vironium13.214.215216<	AISI 1042		52	50	48	45	37	29	26	30
Stainless steelsAISI 302151719202325AISI 30413151718202325AISI 316131517182124AISI 410252526272729Lead3735343331Magnesium99156153151149146Pure199156153151149146Alloy A884NickelPure1059180726668727683Inconel-X-75010.311.713.515.117.020.524.027.630.0Nichrome13141617211414161721Platinum737272727376798390Silver420429425419412396379361Tantalum5858595959606162Tin7367626071727271118112106Vicronium185174159146137125118112106Zirconium252322212121232629Pure252322212121232629 <td>AISI 4130</td> <td></td> <td>43</td> <td>42</td> <td>41</td> <td>40</td> <td>37</td> <td>31</td> <td>27</td> <td>31</td>	AISI 4130		43	42	41	40	37	31	27	31
AISI 302 15 17 19 20 23 25 AISI 304 13 15 17 18 20 23 25 AISI 304 13 15 17 18 20 23 25 AISI 316 13 15 17 18 21 24 AISI 410 25 25 26 27 27 29 Lead 37 35 34 33 31 Magnesium - - 199 156 153 151 149 146 Alloy A8 84 -	Stainless steels									
AISI 30413151718202325AISI 316131517182124AISI 410252526272729Lead3735343331Magnesium99156153151149146Pure199156153151149146Alloy A8848410020.524.027.6Nickel9180726668727683Inconel-X-75010.311.713.515.117.020.524.027.630.0Nichrome13141617211414141414Platinum7372727376798390Silver420429425419412396379361Tantalum5858595959606162Tin73676260171118112106Virconium185174159146137125118112106Virconium252322212121232629Virconium131415161721232629	AISI 302		15	17	19	20	23	25		
AISI 316131517182124AISI 410252526272729Lead3735343331MagnesiumPure199156153151149146Alloy A884NickelPure1059180726668727683Inconel-X-75010.311.713.515.117.020.524.027.630.0Nichrome131416172114161721Platinum737272727376798390Silver420429425419412396379361Tantalum585858595959606162Tin736762607172727273767983Pure25222020191921222525Ti-6Al-4V5.8Tungsten185174159146137125118112106Zirconium742523222121232629Zircalay 415215217210221232	AISI 304	13	15	17	18	20	23	25		
AISI 410 25 25 26 27 27 29 Lead, 37 35 34 33 31 Magnesium $Pure$ 199 156 153 151 149 146 Alloy A8 84 84 1123 1123 1123 1123 1123 1123 Nickel $Pure$ 105 91 80 72 66 68 72 76 83 Inconel-X-750 10.3 11.7 13.5 15.1 17.0 20.5 24.0 27.6 30.0 Nichrome 13 14 16 17 21 21 21.6 31.6 Platinum 73 72 72 73 76 79 83 90 Silver 420 429 425 419 412 396 379 361 Tantalum 58 58 58 59 59 59 60 61 62 Tin 73 67 62 60 71 71 22 25 Ti-6Al-4V 5.8 58 58 58 58 58 58 58 58 Tungsten 185 174 159 146 137 125 118 112 106 Pure 25 23 22 21 21 23 26 29 Zirronium 143 142 152 162 172 192 212 232	AISI 316		13	15	17	18	21	24		
Lead3735343331MagnesiumPure199156153151149146Alloy A884NickelPure1059180726668727683Inconel-X-75010.311.713.515.117.020.524.027.630.0Nichrome1314161721Platinum737272727376798390Silver420429425419412396379361Tantalum585858595959606162Tin7367626071722225Ti-6Al-4V5.8585858595959118112106Virgsten185174159146137125118112106Virgsten252322212121232629Zirgalay 4131415151721232629	AISI 410	25	25	26	27	27	29			
Magnesium Pure199156153151149146Alloy A884NickelPure1059180726668727683Inconel-X-75010.311.713.515.117.020.524.027.630.0Nichrome1314161721Platinum737272727376798390Silver420429425419412396379361Tantalum585858595959606162Tin7367626071712225Ti-6Al-4V5.874159146137125118112106Virconium185174159146137125118112106Pure252322212121232629Zirconium1314151511621232629	Lead	37	35	34	33	31				
Pure199156153151149146Alloy A884NickelPure1059180726668727683Inconel-X-75010.311.713.515.117.020.524.027.630.0Nichrome1314161721Platinum737272727376798390Silver420429425419412396379361Tantalum585858595959606162Tin7367626071722225Ti-6Al-4V5.874159146137125118112106Zirconium252322212121232629Pure252322212121232629Zircolium131415151721232629	Magnesium									
Alloy A884NickelPure 105 91 80 72 66 68 72 76 83 Inconel-X-750 10.3 11.7 13.5 15.1 17.0 20.5 24.0 27.6 30.0 Nichrome 13 14 16 17 21 Platinum 73 72 72 73 76 79 83 90 Silver 420 429 425 419 412 396 379 361 Tantalum 58 58 58 59 59 59 60 61 62 Tin 73 67 62 60 716 716 716 716 Tungsten 185 174 159 146 137 125 118 112 106 Zirconium 726 23 22 21 21 23 26 29 Pure 25 23 22 21 21 23 26 29 Zircolium 133 142 152 162 172 192 212 232	Pure	199	156	153	151	149	146			
NickelPure 105 91 80 72 66 68 72 76 83 Inconel-X-750 10.3 11.7 13.5 15.1 17.0 20.5 24.0 27.6 30.0 Nichrome 13 14 16 17 21 Platinum 73 72 72 73 76 79 83 90 Silver 420 429 425 419 412 396 379 361 Tantalum 58 58 58 59 59 59 60 61 62 Tin 73 67 62 60 71 71 22 25 Tin 73 67 62 60 71 72 72 72 72 Tiranium 73 72 72 72 73 76 79 83 90 Nin m 73 67 62 60 71 73 72 72 72 72 Tiranium 73 74 159 146 137 125 118 112 106 Zirconium 74 74 159 146 137 125 118 112 106 Zirconium 74 152 162 172 192 212 232 212	Allov A8			84						
Pure 105 91 80 72 66 68 72 76 83 Inconel-X-750 10.3 11.7 13.5 15.1 17.0 20.5 24.0 27.6 30.0 Nichrome 13 14 16 17 21 Platinum 73 72 72 73 76 79 83 90 Silver 420 429 425 419 412 396 379 361 Tantalum 58 58 58 59 59 59 60 61 62 Tin 73 67 62 60 72 72 72 72 72 73 Pure 25 22 20 20 19 19 21 22 25 Ti-6Al-4V 5.8 72 76 137 125 118 112 106 Zirconium 25 23 22 21 21 23 26 29 Arres 133 143 152 162 1722 192 212 232	Nickel									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pure	105	91	80	72	66	68	72	76	83
Nichrome1314161721Platinum737272727376798390Silver420429425419412396379361Tantalum585858595959606162Tin736762607172727376Pure252220201919212225Ti-6Al-4V5.874159146137125118112106Zirconium74159146137125118112106Pure2523222121232629Zircalay 413141516171921232629	Inconel-X-750	10.3	11.7	13.5	15.1	17.0	20.5	24.0	27.6	30.0
Platinum 73 72 72 72 73 76 79 83 90 Silver 420 429 425 419 412 396 379 361 Tantalum 58 58 58 59 59 59 60 61 62 Tin 73 67 62 60 60 61 62 Tin 73 67 62 60 73 21 22 25 Tin 73 67 62 60 73 19 21 22 25 Tin 73 67 62 60 137 125 118 112 106 Tinnum 85 174 159 146 137 125 118 112 106 Zirconium 90 21 23 26 29 29 21 23 26 29 Zircalay 4 133 142 152 162 172 192 212 232 232	Nichrome		13	14	16	17	21			
Silver 420 429 425 419 412 396 379 361 Tantalum 58 58 58 59 59 59 60 61 62 Tin 73 67 62 60 73 67 62 60 Titanium 73 67 62 60 73 73 73 Pure 25 22 20 19 19 21 22 25 Ti-6Al-4V 5.8 716 137 125 118 112 106 Zirconium 74 159 146 137 125 118 112 106 Pure 25 23 22 21 21 23 26 29 Zirconium 712 142 152 162 172 192 212 232	Platinum	73	72	72	72	73	76	79	83	90
Tantalum 58 58 58 58 59 59 59 60 61 62 Tin 73 67 62 60 19 19 21 22 25 TitaniumPure 25 22 20 20 19 19 21 22 25 Ti-6Al-4V 5.8 5.8 112 106 Tungsten 185 174 159 146 137 125 118 112 106 Zirconium $9ure$ 25 23 22 21 21 23 26 29 Zircalay 4 133 142 152 162 172 192 212 232	Silver	420	429	425	419	412	396	379	361	
Tin73 67 62 60 TitaniumPure 25 22 20 19 19 21 22 25 Ti-6Al-4V 5.8 Tungsten 185 174 159 146 137 125 118 112 106 ZirconiumPure 25 23 22 21 21 23 26 29 Zircalay 4 133 142 152 162 172 192 212 232	Tantalum	58	58	58	59	59	59	60	61	62
Titanium Pure 25 22 20 20 19 19 21 22 25 Ti-6Al-4V 5.8 5.8 185 174 159 146 137 125 118 112 106 Zirconium Pure 25 23 22 21 21 23 26 29 Zircalay 4 13.3 14.2 15.2 16.2 17.2 19.2 21.2 23.2	Tin	73	67	62	60					
Pure252220201919212225Ti-6Al-4V 5.8 Tungsten185174159146137125118112106ZirconiumPure252322212121232629Zircalov 413.314.215.216.217.219.221.223.2	Titanium	10	01							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pure	25	22	20	20	19	19	21	22	25
Tungsten 185 174 159 146 137 125 118 112 106 Zirconium Pure 25 23 22 21 21 23 26 29 Zircalou 4 13.3 14.2 15.2 16.2 17.2 19.2 21.2 23.2	Ti-6Al-4V	20	5.8				26			
Zirconium Pure 25 23 22 21 21 23 26 29 Zircalov 4 13.3 14.2 15.2 16.2 17.2 19.2 21.2 23.2 29	Tungsten	185	174	159	146	137	125	118	112	106
Pure 25 23 22 21 21 21 23 26 29 Zircalov 4 13.3 14.2 15.2 16.2 17.2 19.2 21.2 23.2	Zirconium	100		201						
$7 \text{ irrealow } 4 \qquad 12.2 \qquad 14.2 \qquad 15.2 \qquad 16.2 \qquad 17.2 \qquad 10.2 \qquad 21.2 \qquad 23.2$	Pure	25	23	22	21	21	21	23	26	29
= 10.2 10.2 17.2 10.2 17.2 10.2 17.2 21.2 23.2	Zircaloy-4	13.3	14.2	15.2	16.2	17.2	19.2	21.2	23.2	

Table A.1*b* Solid metals: Temperature dependence of thermal conductivity k [W/m K] (see Table A.1*a* for metal compositions)

Table A.3 (Concluded)					
	Т	ρ	С	k	α
	K	kg/m ³	J/kg K	W/m K	$m^{2}/s \times 10^{6}$
Loose fill					
Cellulose, wood or paper pulp	290			0.038	
······································	300	45		0.039	
	310			0.042	
Vermiculite, expanded	240			0.058	
	260			0.061	
	280			0.064	
	300	122		0.069	
	320			0.074	
	240			0.052	
	260			0.056	
	280			0.059	
	300	80		0.063	
	320			0.068	
Magnesia	300	270		0.062	
(85 %)	350			0.068	
	400			0.073	
	450			0.078	
	500			0.082	
Paper	300	930	2500	0.13	0.056
Polystyrene, rigid	240			0.023	
	260			0.024	
	280			0.026	
	300	30-60	1210	0.028	0.4-0.8
	320			0.030	
Polyurethane, rigid foam	300	70		0.026	
Rubber	070	1200	2010	0.15	0.062
Haru	270	1200	2010	0.15	0.002
Reoptene Digid formed	260	1230	1950	0.19	0.079
Rigiu Ioameu	200			0.028	
	200	70		0.030	
	320	70		0.032	
Snow	273	110		0.034	
Show	215	500		0.190	
Soil		200		0.170	
Drv	300	1500	1900	1.0	0.35
Wet	300	1900	2200	2.0	0.5
Woods					
Oak, parallel to grain	300	820	2400	0.35	0.18
perpendicular to grain	300	820	2400	0.21	0.11
White Pine, parallel to grain	300	500	2800	0.24	0.17
perpendicular to grain	300	500	2800	0.10	0.071
Wool, sheep	300	145		0.05	

Tabl Judad) 1 210

Temp.,	Density,	Specific Heat,	Thermal Conductivity,	Thermal Diffusivity,	Dynamic Viscosity,	Kinematic Viscosity,	Prandtl Number,
7, °F	ρ, lbm/ft ³	C_p , Btu/Ibm · °F	k, Btu/h · ft · °F	α , ft ² /h	μ, lbm/ft · h	ν, ft²/h	Pr
-300	0.24844	0.5072	0.00508	0.0403	0.01454	0.0585	1.4501
-200	0.15276	0.2247	0.00778	0.2266	0.02438	0.1596	0.7042
-100	0.11029	0.2360	0.01037	0.3985	0.03255	0.2951	0.7404
-50	0.09683	0.2389	0.01164	0.5029	0.03623	0.3741	0.7439
0	0.08630	0.2401	0.01288	0.6215	0.03970	0.4601	0.7403
10	0.08446	0.2402	0.01312	0.6468	0.04038	0.4781	0.7391
20	0.08270	0.2403	0.01336	0.6726	0.04104	0.4963	0.7378
30	0.08101	0.2403	0.01361	0.6990	0.04170	0.5148	0.7365
40	0.07939	0.2404	0.01385	0.7259	0.04236	0.5335	0.7350
50	0.07783	0.2404	0.01409	0.7532	0.04300	0.5525	0.7336
60	0.07633	0.2404	0.01433	0.7810	0.04365	0.5718	0.7321
70	0.07489	0.2404	0.01457	0.8093	0.04428	0.5913	0.7306
80	0.07350	0.2404	0.01481	0.8381	0.04491	0.6110	0.7290
90	0.07217	0.2404	0.01505	0.8673	0.04554	0.6310	0.7275
100	0.07088	0.2405	0.01529	0.8969	0.04615	0.6512	0.7260
110	0.06963	0.2405	0.01552	0.9270	0.04677	0.6716	0.7245
120	0.06843	0.2405	0.01576	0.9575	0.04738	0.6923	0.7230
130	0.06727	0.2405	0.01599	0.9884	0.04798	0.7132	0.7216
140	0.06615	0.2406	0.01623	1.0198	0.04858	0.7344	0.7202
150	0.06507	0.2406	0.01646	1.0515	0.04917	0.7558	0.7188
160	0.06402	0.2406	0.01669	1.0836	0.04976	0.7774	0.7174
170	0.06300	0.2407	0.01692	1.1160	0.05035	0.7992	0.7161
180	0.06201	0.2408	0.01715	1.1489	0.05093	0.8213	0.7148
190	0.06106	0.2408	0.01738	1.1821	0.05151	0.8435	0.7136
200	0.06013	0.2409	0.01761	1.2156	0.05208	0.8660	0.7124
250	0.05590	0.2415	0.01874	1.3884	0.05488	0.9818	0.7071
300	0.05222	0.2423	0.01985	1.5690	0.05758	1.1027	0.7028
350	0.04899	0.2433	0.02094	1.7566	0.06020	1.2288	0.6995
400	0.04614	0.2445	0.02200	1.9507	0.06274	1.3598	0.6971
450	0.04361	0.2458	0.02305	2.1508	0.06522	1.4955	0.6953
500	0.04134	0.2472	0.02408	2.3565	0.06762	1.6359	0.6942
600	0.03743	0.2503	0.02608	2.7834	0.07225	1.9300	0.6934
700	0.03421	0.2535	0.02800	3.2292	0.07666	2.2411	0.6940
800	0.03149	0.2568	0.02986	3.6925	0.08088	2.5684	0.6956
900	0.02917	0.2599	0.03164	4.1721	0.08494	2.9112	0.6978
1000	0.02718	0.2630	0.03336	4.6671	0.08883	3.2688	0.7004
1500	0.02024	0.2761	0.04106	7.3465	0.10644	5.2584	0.7158
2000	0.01613	0.2855	0.04752	10.3200	0.12163	7.5418	0.7308
2500	0.01340	0.2922	0.05309	13.5532	0.13501	10.0733	0.7432
3000	0.01147	0.2972	0.05811	17.0526	0.14696	12.8170	0.7516
3500	0.01002	0.3010	0.06293	20.8709	0.15771	15.7428	0.7543
4000	0.00889	0.3040	0.06789	25.1094	0.16745	18.8252	0.7497

Properties of air at 1 atm pressure

Note: For ideal gases, the properties C_{p} , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 198; and *Thermophysical Properties of Matter*, Vol. 3: *Thermal Conductivity*, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: *Viscosity*, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

Empirical correlations for the average Nusselt number for natural convection over surfaces							
Geometry	Characteristic length L_c	Range of Ra	Nu	citical			
Vertical plate	L	10 ⁴ -10 ⁹ 10 ⁹ -10 ¹³ Entire range	$\begin{split} Ν = 0.59 Ra_{\ell}^{1/4} \\ Ν = 0.1 Ra_{\ell}^{1/3} \\ Ν = \left\{ 0.825 + \frac{0.387 Ra_{\ell}^{1/6}}{[1 + (0.492/Pr)^{9/16}]^{8/27}} \right\}^2 \\ & \text{(complex but more accurate)} \end{split}$	(9-19) (9-20) (9-21)			
Inclined plate	L		Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate Replace g by $g \cos\theta$ for Ra < 10 ⁹	ne sugg 1975, Ri This reli Verific States St			
Horiontal plate (Surface area A and perimeter p) (a) Upper surface of a hot plate (or lower surface of a cold plate) Hot surface T_s	A /0	10 ⁴ -10 ⁷ 10 ⁷ -10 ¹¹	Nu = 0.54Ra] ^{/4} Nu = 0.15Ra] ^{/3}	(9-22) (9-23)			
(b) Lower surface of a hot plate (or upper surface of a cold plate) T_s Hot surface	nsip	105-1011	$Nu = 0.27 Ra_L^{1/4}$	(9-24)			
Vertical cylinder T_s	L		A vertical cylinder can be treated as a vertical plate when $D \ge \frac{35L}{\text{Gr}_{L}^{1/4}}$	Vertic Nortice In outer the diam			
Horizontal cylinder T_s	D	$Ra_D \le 10^{12}$	$Nu = \left\{ 0.6 + \frac{0.387 \text{Ra}_{\textit{b}}^{1/6}}{[1 + (0.559/\text{Pr})^{9/16}]^{8/27}} \right\}^2$	(9-25)			
Sphere	D	$Ra_{D} \leq 10^{11}$ (Pr ≥ 0.7)	$Nu = 2 + \frac{0.589 Ra_D^{1/4}}{[1 + (0.469/Pr)^{9/16}]^{4/9}}$	(9-26)			