Ph.D. Qualifying Examination

Engineering Mathematics

Fall 2016

Logistics Notes:

- Time allowed: 2 hours
- Closed book and closed notes; one sheet (8.50 × 11.00 in, 2-sided) of formulas is allowed
- 4 problems
- Calculators are allowed
- Laptops, cell phones, and similar electronic devices are not allowed
Problem 1.

Compute the first three non-zero terms in the Taylor series of $f(x) = e^x \sin x$ about $x = 0$. Use both $f(x)$ and the Taylor series approximation to compute the area under the curve on the interval $x \in [0, 1]$ and compare the results.
Problem 2.

a) Solve the following boundary value problem.

\[\frac{d^2y}{dx^2} + y = 0 \quad \text{with} \quad y(0) = y(\pi) = 0 \]

b) Solve the following initial value problem.

\[m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = A \cos \omega t \quad \text{with} \quad x(0) = a, \frac{dx}{dt}(0) = 0 \]

Explain as much as you can about how the system behaves for varying values of \(\omega \).
Problem 3.

a) Find the derivative of the following function \(y(x) \).

\[
y(x) = \frac{e^x \cos x}{x^2 - x \sin x}
\]

b) Find the indefinite integral of the following function \(f(x) \).

\[
f(x) = x^2 e^{3x}
\]

(Hint: use integration by parts.)
Problem 4.

Compute the line integral
\[\int_C \vec{F} \cdot d\vec{r} \]
where \(\vec{F} = 2xy \hat{i} + (x^2 - 1) \hat{j} \) and \(C \) is the spiral \(r = 2\theta \), with \(\theta \in (0, 5\pi/2) \).

(Hint: use polar coordinates to express \(d\vec{r} \).)